Barium Disulphide

By I. Kawada, K. Kato and S. Yamaoka
National Institute for Researches in Inorganic Materials, Kurakake, Sakura-mura, Niihari-gun, Ibaraki-ken 300-31, Japan

(Received 11 June 1975; accepted 7 July 1975)

Abstract

BaS}_{2}\), monoclinic, $C 2 / c, a=9 \cdot 299$ (4), $b=$ 4.736 (2), $c=8.993$ (4) $\AA, \beta=118.37$ (3) ${ }^{\circ}, Z=4, D_{x}=$ $3.84 \mathrm{~g} \mathrm{~cm}^{-3}$. Crystals were prepared by heating an equimolar mixture of BaS and S up to $800^{\circ} \mathrm{C}$ in a graphite tube placed in an evacuated Vycol glass ampoule. S_{2}^{2-} ions (S-S bond length $2 \cdot 118 \AA$) form arrays parallel to $\langle 110\rangle$. Ba ions are located between these arrays and coordinated to eight S atoms.

Introduction. The single crystals obtained were lemonyellow. The specimen examined by X-rays had approximately the shape of a hemisphere with a radius of about 0.08 mm . The intensity data were collected on a Rigaku four-circle diffractometer with Mo $K \alpha_{1}$ ($\lambda=$ $0.70926 \AA$) radiation monochromatized by graphite.

For $2 \theta<90 \cdot 0^{\circ}, 2787$ independent reflexions were measured, of which 2145 were considered to be zero. The observed intensities were rather weak for the specimen size, indicating that only a part of the specimen was crystalline. For this reason, an absorption correction was not applied.
The systematic absences were $h k l: h+k=2 n+1$ and $h 0 l: l=2 n+1$, giving possible space groups $C 2 / c$ (No. 15) and $C c$ (No. 9). The structure determination verified the former space group.

The position of the Ba atom was obtained from a Patterson map. A difference Fourier synthesis revealed the position of the S atom. The structure was refined by the full-matrix least-squares method with ORFLS (Busing, Martin \& Levy, 1962) with anisotropic tem-

Table 1. Atomic parameters $\left(\times 10^{4}\right)$

Temperature factors are expressed as $\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$									
	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Ba	0	$1446(3)$	2500	$47(1)$	$160(4)$	$56(1)$	0	$27(1)$	0
S	$1603(3)$	$3545(8)$	$206(3)$	$53(3)$	$163(11)$	$73(4)$	$5(7)$	$38(3)$	$2(1)$

Fig. 1. The structure of BaS_{2} projected along c. Small circles are Ba atoms and large circles S atoms. Fractional z coordinates ($\times 10^{2}$) are shown in the circles. Ba-S distances are also indicated. For the symmetry-operation superscripts see Table 2.

Table 2. Bond angles $\left({ }^{\circ}\right)$ around $\mathrm{Ba}(\angle \mathrm{S}-\mathrm{Ba}-\mathrm{S})$

	S^{1}	$\mathrm{S}^{\mathbf{1 1}}$	$\mathrm{S}^{\text {III }}$
S	$144 \cdot 1$ (1)	$85 \cdot 9$ (1)	$109 \cdot 9$ (1)
S		109.9 (1)	85.9 (1)
$\mathrm{S}^{1 i}$			128.3 (1)
S^{111}			
$S^{\text {iv }}$			
S^{v}			
$\mathrm{S}^{\text {v1 }}$			
Symmetry code			
			$y, \frac{1}{2}-z$
	i	$\frac{1}{2}-x$,	$y, \frac{1}{2}-z$
	i	$-\frac{1}{2}+x$,	y, z
		$-x$,	$y,-z$

perature factors. No parameter shift occurred in the last least-squares cycle. The final R value was 0.056 and the weighted $R 0.049$ for 642 observed reflexions.* The atomic scattering factors for Ba and S were taken from Hanson, Herman, Lea \& Skillman (1964).

Discussion. The atomic parameters of BaS_{2} are given in Table 1. In the structure of BaS_{2}, arrays of disulphide ions S_{2}^{2-} with an S-S bond length of $2 \cdot 118 \AA$ run parallel to $\langle 110\rangle$ at approximately $z=0$ and $z=\frac{1}{2}$ (Figs. 1 and 2). Compared with the non-bonded S-S distances ranging from 3.21 to $3.98 \AA$ found in the closely related compounds $\mathrm{Ba}_{2} \mathrm{~S}_{3}$ and BaS_{3}, the $\mathrm{S}-\mathrm{S}$ distance of $3 \cdot 143 \AA$ between neighbouring disulphide ions in BaS_{2} is rather short, possibly suggesting the existence of some weak bonding between them. The S-S-S angle in these arrays is $165 \cdot 08^{\circ}$. The Ba ion is located between the arrays of disulphide ions and surrounded by eight S atoms; the $\mathrm{Ba}-\mathrm{S}$ distances range from $3 \cdot 151$ to $3 \cdot 223 \AA$.

The structures of the above-mentioned barium polysulphides were determined by Yamaoka, Lemley, Jenks \& Steinfink (1975) using single crystals obtained under high pressure. $\mathrm{Ba}_{2} \mathrm{~S}_{3}$ contains a divalent S ion and an S_{2}^{2-} disulphide ion with an S-S bond length of $2.32 \AA$. The barium ions are each surrounded by nine S atoms which are 3.11 to $3.91 \AA$ distant from the Ba ions. In BaS_{3} the S atoms form S_{3}^{2-} polysulphide ions with a bond length of $2.074 \AA$ and the Ba is surrounded by 12 S atoms; the $\mathrm{Ba}-\mathrm{S}$ distances range from $3 \cdot 204$ to $3.541 \AA$. It should be noted that in this series of barium polysulphides, including BaS_{2}, the bond lengths in the

[^0]| S^{10} | S^{\vee} | $\mathrm{S}^{v 1}$ | $\mathrm{S}^{\mathrm{vii}}$ |
| :---: | :---: | :---: | :---: |
| $58 \cdot 5$ (1) | $93 \cdot 9$ (1) | 86.1 (1) | $121 \cdot 6$ (1) |
| $93 \cdot 9$ (1) | 58.5 (1) | $121 \cdot 6$ (1) | $86 \cdot 1$ (1) |
| $141 \cdot 1$ (1) | $82 \cdot 3$ (1) | $97 \cdot 8$ (1) | 38.9 (1) |
| 82.3 (1) | $141 \cdot 1$ (1) | $38 \cdot 9$ (1) | 97.8 (1) |
| | $84 \cdot 8$ (1) | $95 \cdot 1$ (1) | 179.9 (21) |
| | | $179 \cdot 9$ (21) | $95 \cdot 1$ (1) |
| | | | $85 \cdot 0$ (1) |

Fig. 2. Projection of the structure along b. Small circles are Ba atoms and large circles S atoms. Fractional y coordinates $\left(\times 10^{2}\right)$ are shown in the circles.
polysulphide ions decrease with increasing S content in the compounds, probably indicating increasing bond strengths.
Interatomic distances and angles were calculated with ORFFE (Busing, Martin \& Levy, 1964). The Ba-S distances in the coordination polyhedron are indicated in Fig. 1. The bond angles at Ba are listed in Table 2. The calculations were carried out on the FACOM 270-20 of this Institute.

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Oak Ridge National Laboratory Report ORNL-TM-305.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Oak Ridge National Laboratory Report ORNL-TM-306.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Yamaoka, S., Lemley, J. T., Jenks, J. M. \& Steinfink, H. (1975). Inorg. Chem. 14, 129-131.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31277 (5 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 1 1NZ, England.

